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A new sigmoid growth equation is presented for curve-fitting, analysis and simulation of growth curves. Like the
logistic growth equation, it increases monotonically, with both upper and lower asymptotes. Like the Richards
growth equation, it can have its maximum slope at any value between its minimum and maximum. The new sigmoid
equation is unique because it always tends towards exponential growth at small sizes or low densities, unlike the
Richards equation, which only has this characteristic in part of its range. The new sigmoid equation is therefore
uniquely suitable for circumstances in which growth at small sizes or low densities is expected to be approximately
exponential, and the maximum slope of the growth curve can be at any value. Eleven widely different sigmoid curves
were constructed with an exponential form at low values, using an independent algorithm. Sets of 100 variations of
sequences of 20 points along each curve were created by adding random errors. In general, the new sigmoid equation
fitted the sequences of points as closely as the original curves that they were generated from. The new sigmoid
equation always gave closer fits and more accurate estimates of the characteristics of the 11 original sigmoid curves
than the Richards equation. The Richards equation could not estimate the maximum intrinsic rate of increase (relative
growth rate) of several of the curves. Both equations tended to estimate that points of inflexion were closer to half the
maximum size than was actually the case ; the Richards equation underestimated asymmetry by more than the new
sigmoid equation. When the two equations were compared by fitting to the example dataset that was used in the
original presentation of the Richards growth equation, both equations gave good fits. The Richards equation is
sometimes suitable for growth processes that may or may not be close to exponential during initial growth. The new
sigmoid is more suitable when initial growth is believed to be generally close to exponential, when estimates of
maximum relative growth rate are required, or for generic growth simulations.
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INTRODUCTION

Classical growth models, such as the logistic, Gompertz and
Richards equations continue to be widely and frequently
used to describe various biological processes (Werker and
Jaggard, 1997). Many of these equations define sigmoid
curves, in which the rate of growth increases as size
increases from low values, reaches a maximum at a point of
inflexion and then decreases towards zero at an upper
asymptote, so that they look like the central part of a
rotated S (Ratkowsky, 1983). Much current statistical
software specifically assists the convenient fitting of such
equations to observations. Most often biologists have used
models like the logistic, Gompertz or monomolecular
functions, which have only three parameters (if it is assumed
that the minimum value is 0) (Zeide, 1993). These three
parameters are usually an upper asymptote, a rate parameter
and a time constant. The rate parameter determines the rate
at which growth initially accelerates. The time constant
determines the time at which the function has a specific
value between its minimum and maximum, or the time when
growth rate is maximum (e.g. Pienaar and Turnbull, 1973).

* Fax 44 (0) 1224 311556, e-mail C.Birch!mluri.sari.ac.uk

Some three-parameter growth functions, such as the Weibull
function, do not need a time constant because they have
zero value at time zero, so that they are more flexible in
other respects (Yang, Kozak and Smith, 1978). However,
because the curves defined by these equations are severely
constrained, many have chosen to use equations with
additional parameters. The Richards equation continues to
be the most popular of these more flexible growth equations
since it was first proposed for this purpose by Richards
(1959). It is still used for diverse purposes, including
modelling tree growth, the growth of juvenile mammals and
birds, and comparisons of treatment effects on plant growth
(Pienaar and Turnbull, 1973; Huang and Titus, 1994;
Verwijst and Vonfircks, 1994; Parresol, 1995; Rennolls,
1995; Gaillard et al., 1997).

The Richards equation has been popular for several
reasons. It has an additional parameter, which is a shape
parameter that can make the Richards equation equivalent
to the logistic, Gompertz, or monomolecular equations
(France and Thornley, 1984). Varying the shape parameter
allows the point of inflexion of the curve to be at any value
between the minimum and the upper asymptote. An
important factor in its use instead of other sigmoid equations
may be its availability as one of the standard equations
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T 1. Symbols used in equations in the text

Symbol Meaning

y A variable representing the value of a measure of size or
density of an organism or population.

t A variable representing time.
f( ) An unspecified function.
a The maximum intrinsic rate of increase (RGR) of y.

Dimension equal to time−".
K The upper asymptote of y. Dimension equal to size.
b An additional parameter in the Richards equation

introduced as a power law so that it can define
asymmetric curves. Dimensionless scalar.

d A parameter in the Richards equation which allows the
time at which y¯K}2 to be varied. Dimensionless
scalar.

t
!

The time at which y¯K}2.
c An additional parameter in the new sigmoid equation

introduced so that it can define asymmetric curves.
Dimensionless scalar.

e A universal constant, the base of the natural logarithm.
k Lower asymptote of a logistic curve (Appendix).
z The rate parameter of the upper of two logistic curves in

one of the hybrid curves used to generate the simulated
dataset. Dimension equal to time−" (Appendix).

offered for curve-fitting by statistical software packages (e.g.
Genstat 5 Committee, 1993; Sigmaplot2 4.0, 1997).

However, there have been criticisms of the Richards
equation. Some authors consider that the additional
parameter used in it has no obvious biological interpretation
(Thornley and Johnson, 1990; Zeide, 1993). It has been
accused of being so unstable numerically that its parameter
estimates become ‘useless ’ (Zeide, 1993), or ‘practical
problems are often encountered when fitting to experimental
data’ (Thornley and Johnson, 1990). On the other hand,
well-written specialist applications of the Richards equation
can be very stable (e.g. Genstat 5 Committee, 1993). Often
it is reported as failing to provide good fits to observations,
or being worse than alternative models (e.g. Brown and
Mayer, 1988; Meng et al., 1997; Werker and Jaggard, 1997).
There are many alternative sigmoid curves, and some
reviewers have advised against use of the Richards equation
(Ratkowsky, 1983; Thornley and Johnson, 1990; Zeide,
1993; Shvets and Zeide, 1996).

In this paper, a new sigmoid growth equation with unique
properties will be presented that has many of the features
that make the Richards equation popular for curve-fitting.
It can have a point of inflexion at any value between its
minimum and its upper asymptote. In addition, it is more
consistent than the Richards equation, because its minimum
is always an asymptote, which makes the new equation
more suitable for generic simulation models. The new
sigmoid equation can be justified using the same theoretical
arguments as the Richards equation, and it is similarly a
generalization of the logistic equation.

Curve fits using the new sigmoid equation were compared
with fits using the Richards growth equation. To avoid
confounding this comparison with the biological
peculiarities and error structures of particular real life
examples, a dataset was simulated with known charac-

teristics and error structure. The two growth models could
then be compared not only in terms of their ability to
statistically fit the data, but also in terms of their ability to
describe the known characteristics of the original data. The
two models were also compared using the observations of
Pearl, Edwards and Miner (1934), which were originally
used by Richards (1959) in his presentation of his growth
equation, so as to confirm that conclusions from the
comparison made using simulated data are relevant to real
life applications.

AN EMPIRICAL MODEL OF VEGETATION
GROWTH

This study results from a requirement for an empirical
equation to represent the growth of various individual
species within mixed vegetation. It is likely that, at
sufficiently low densities (i.e. mass per unit area), the growth
(i.e. increase in mass) of an individual species will tend to be
proportional to its mass. Pasteur’s Principle of Homogenesis
demands that there should be no potential for growth at
zero mass (Huxley, 1870). Therefore all derivatives should
be zero for zero mass. This leads directly to an exponential
model of growth:

dy

dt
¯ f(y) y (1)

where y is a measure of the density (mass per unit area) of
a species, t is time and f(y) equals the relative growth rate
(RGR), which reduces as y increases. Here we are not
presenting a model of inter-specific competition, so we
assume a monoculture for the rest of this presentation.

More or less the simplest non-constant form of f(y)
generates the logistic equation:

dy

dt
¯ ay 01®

y

K1 (2)

where a is a constant equal to the RGR at very low values
of y, and K is the maximum observable value of y. Although
the logistic growth equation generates a curve that tends
towards an exponential form at low values, its maximum
slope, or ‘point of inflexion’, is always at half the value of
the upper asymptote, K}2. This is unsatisfactory, because
the factors that determine the density at which each species
grows fastest are complex, so it is unlikely that all species
grow fastest in monoculture when they are at half their
maximum standing crop.

Introducing another parameter into the equation could
allow the shape of the upper part of the curve to be
independent of the shape of the lower part, while still having
an equation that tends towards an exponential form at low
values of y. One option is the Richards growth equation:

¦y

¦t
¯ ay 91®0yK1

b: (3)

where b is a constant that allows the shape of the sigmoid
curve to be varied. When b¯ 1 the Richards equation
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matches the logistic equation, but for b" 1 the maximum
slope of the curve is when y"K}2, and when b! 1 the
maximum slope of the curve is when y!K}2. This allows
a wider range of curves to be produced, but as b tends
towards zero, the lowest value of y at the point of inflexion
remains greater than K}e, where e represents the universal
constant, the base of the natural logarithm. In fact, as b
tends towards zero the Richards growth curve tends towards
the Gompertz growth curve, which has its steepest slope at
y¯K}e, and does not tend towards an exponential form for
low y (Richards, 1959). For these reasons the integrated
form of the Richards equation has two forms, depending on
the value of b (Causton and Venus, 1981) :

y¯K(1e(d−abt))(−"/b) for b" 0 and a" 0 (4)

y¯K(1®e(d−abt))(−"/b) for 0" b&®1 and a! 0 (5)

where d is a parameter that indirectly defines the value of t
(time) at which y¯K}2. It should be noted that eqn (4)
tends towards an exponential equation at low values of y,
and is the same as the logistic equation when b¯ 1. Hence
the Richards equation has sometimes been called a
generalized logistic equation. However, eqn (5) is inter-
mediate between the monomolecular equation (b¯®1) and
the Gompertz equation (as b tends to 0). When abt¯ d, y
¯ 0, but dy}dt" 0, so this equation predicts non-zero
growth at zero mass, infringing the Principle of Hom-
ogenesis. The maximum RGR at low values of y is a in eqn
(4), but a is negative in eqn (5) and the maximum RGR at
low values of y is therefore undefined.

In addition to the maximum RGR and upper asymptote,
various other characteristics of a growth curve described by
the Richards equation can be derived from its parameters.
For example:

the maximum growth rate¯Kab(1b)(−("+b)/b) (6)

the value of y at which growth is maximum¯K(1b)(−"/b)

(7)

the time at which y¯K}2¯
d®ln(2b®1)

ab
for b" 0,

d®ln(1®2b)

ab
for b! 0 (8)

The Richards equation is unsuitable for constructing
simple empirical simulations of the growth of vegetation
because only eqn (4) satisfies our assumption that growth is
near exponential at very low densities. For example, swards
of some cultivars of ryegrass (Lolium perenne L.) can
achieve their maximum net production at a mass density of
only 200 g m−# (Alberda and Sibma, 1968). This is about 0±2
of the maximum standing crop of about 1000 g m−#.
Equation (4) only applies if the point of inflexion (equivalent
to maximum net production) is above 0±368 (1}e) of the
value of the upper asymptote. Equation (5) would have to
be used for Lolium perenne, but it has intolerable properties,
including non-zero growth at zero mass. For a generic
simulation model, we require a sigmoid equation that can
have its point of inflexion at any value, while always tending

towards exponential growth at low values. This is not just to
satisfy biological preconceptions, but also because non-zero
growth at zero mass is likely to cause a simulation to fail
(‘crash’) during runs.

There are many other sigmoid equations, but very few can
be used as generalizations of the logistic equation because
they do not simulate exponential growth at small sizes or
low densities. For example, the Weibull equation is excellent
for empirical curve-fitting, and it ensures that size or density
is zero at time zero, which is useful in many applications
(Yang et al., 1978; Ratkowsky, 1983; Brown and Mayer,
1988). However, although its slope at zero size or density
may be zero, it predicts growth from zero mass and is
therefore fundamentally different from the logistic equation.

A new generalized logistic equation

If the integrated form of a logistic equation is rearranged
to solve for t, we obtain:

t®t
!
¯

ln(y)

a
®

ln(K®y)

a
(9)

where t
!
is the time at which y¯K}2. One way to increase

the flexibility of this equation would be to introduce a new
parameter to give :

t®t
!
¯

ln(y)

a
®

c ln(K®y)

a


(c®1) ln(K}2)

a
(10)

where c is a new shape parameter adjusting the relative
importance of the acceleration of growth as y increases from
low values and the deceleration of growth as y approaches
K. The closeness of the relationship between this new
equation and the original logistic equation means that it
represents a ‘generalized logistic equation’ just as much as
the Richards equation. The differential form of this
equation, predicting growth rate as a function of size is :

dy

dt
¯

ay(K®y)

K®ycy
(11)

This new sigmoid equation has several immediate advan-
tages. Varying the value of c from 0 upwards allows the
maximum rate of growth to be at any value of y from 0 to
K. The equation is equivalent to the logistic equation when
c¯ 1 and the simple exponential equation when c¯ 0.
When c! 1, the maximum rate of growth is at y"K}2;
when c" 1, the maximum rate of growth is at y!K}2. The
two assumptions, that growth tends towards exponential
growth at low y and that K is an upper asymptote for y, are
obeyed for any positive value of c. The full range of sigmoid
curves can be generated using only positive values of the
parameters a, c and K. Furthermore, the absence of a power
law is an important advantage for numerical application.
The only disadvantage of this equation is that it cannot be
integrated to give an analytical solution for y. However,
almost all applications of growth equations are numeric, so
this is a minor problem.



716 Birch—A New Sigmoid Growth Equation

Like the Richards equation, several other characteristics
of a growth curve described by the new equation can be
derived from its parameters :

the maximum RGR¯ a for all positive values of c

the maximum growth rate¯
aK

(oc1)#
(12)

the value of y at which growth is maximum¯
K

oc1

(13)

MATERIALS AND METHODS

Simulated dataset

The new sigmoid equation was expected to have advantages
over the Richards equation when representing growth
processes that tend towards exponential growth at small
sizes or low densities. These advantages were expected to be
most significant when the point of inflexion was substantially
below half the value of the upper asymptote. Construction
of the test dataset therefore required a sigmoid curve that :
(1) tended towards exponential growth at low values ; (2)
had points of inflexion at diverse positions relative to the
upper asymptote ; (3) did not have any other intrinsic
reasons for being more easily fitted by one equation than the
other.

The logistic equation tends towards exponential growth
at low values of its dependent variable and is a special case
of both theRichards equation and the new sigmoid equation,
satisfying conditions (1) and (3). Condition (2) was satisfied
by splining together different logistic curves, so that the
resulting sigmoid hybrid curves had points of inflexion at
whatever values were required (see Appendix).

To simplify analysis, the hybrid curves were standardized
as much as possible. The lower part of every hybrid curve
was the lower part of a logistic with a maximum RGR [a in
eqn (2)] equal to 1 and a lower asymptote equal to zero; the
upper part was equal to the upper part of a logistic curve
with the equivalent parameter a equalling a value from the
series 0±01, 0±02, 0±05, 0±1, 0±2, 0±5, 0±75, 1, 1±5, 2, 5. There
were therefore 11 different hybrid curves. One of the hybrid
curves, in which the parameter a of both its upper and lower
parts equalled 1, was the logistic growth curve with
maximum RGR equal to 1. The pairs of logistic curves were
joined so that the hybrid curves had the following properties :
(1) the lower asymptote for every hybrid curve was zero; (2)
the upper asymptote for every hybrid curve was 100; (3) the
two parts of each hybrid curve joined at its steepest point
(point of inflexion). Note that this was usually the steepest
point along only one of the two logistic curves used to
generate it ; (4) the joins were at time zero; (5) the two parts
of each hybrid curve had equal value and slope where they
joined, so that the value and slope of the hybrid curves were
continuous.

The equations used for the eleven curves have been
provided in the Appendix, which also demonstrates that the
hybrid curves were continuous with continuously changing
slope. The curves and the test dataset generated from them

were intended to be abstract, but for ease of reference the
vertical axis is referred to as ‘size ’, while the horizontal axis
is time (Fig. 1).

Robust estimation of all the parameters in the two
sigmoid equations required several points near the upper
asymptote, several at small sizes and an adequate sample
near the point of inflexion. Therefore twenty original points
were chosen along each hybrid curve, ten before the point of
inflexion at time zero and ten after (Fig. 1). The first point
of every series was where size¯ 0±1. The next nine points
were chosen to be at regular time intervals, so that the
interval between the tenth point and time zero was half the
interval between adjacent previous points. Along curves in
which the point of inflexion was equal to or below size¯ 50,
the last point was where size¯ 99±9 (100®0±1). Points 11 to
19 were chosen at regular time intervals between time¯
zero and the last point, so that the interval between time¯
zero and the eleventh point was half the interval between
adjacent following points. Thus the 20 original points along
the logistic curve were at regular time intervals between
the first at size¯ 0±1 and the last at size¯ 99±9. For the
remaining curves, this approach would have selected points
too close in time to allow accurate estimation of the upper
asymptote. Therefore, along curves in which the point of
inflexion was above size¯ 50, points 11 to 20 were chosen
to be at the same regular time intervals as used for the first
ten points.

The basis of the simulated dataset was therefore 11 sets of
20 points each. The comparison was supposed to test the
suitability of the new sigmoid equation and the Richards
equation for fitting growth processes that tended towards
exponential growth at small sizes. It was therefore ap-
propriate to logarithmically transform all points, so as to
emphasize growth at small sizes.

Fromeach of the 11 sets of 20 logarithmically-transformed
points, 100 perturbed replicates were generated by adding
randomly generated error terms to each point. Each error
term was generated from a normal distribution with mean
¯ zero and standard deviation¯ 0±09531 [log

e
(1±1)], using

a random number generator (Maple V Release 4; Redfern,
1993). The error terms were therefore approximately
equivalent to a coefficient of variation¯ 10%. Adding
normally distributed error terms with uniform variance to a
logarithmically transformed dataset meant that the errors in
the untransformed sizes were proportional to the original
sizes at each point. Current frequent use of logarithmic
transformations in statistical analysis of biological measure-
ments suggests that biological variables that cannot have
values below zero often have standard deviations pro-
portional to their means.

The construction of the curves defined the values of
various characteristics, which could be compared with the
estimates from fitting the two sigmoid equations. The
maximum RGR of all curves was 1±0, the upper asymptote
was 100. The time t

!
at which size¯K}2, the maximum

slope (growth rate) and the size at the point of inflexion
could all be calculated from the logistic equations that were
used to generate the hybrid curves (Appendix). These values
were compared with those calculated from the parameters
of fitted Richards equations, using eqns (3) to (8), and from
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F. 1. Five examples from the 11 hybrid curves used to generate the test data for comparing the new sigmoid equation with the Richards equation.
The curves are labelled in the key according to the value of the rate parameter [a in eqn (2)] of the logistic equation used for the upper half of
each curve. The range of values for this parameter among all 11 curves was 0±01–5±0, so this graph includes the two most extreme curves. The
curve with a value of 1±0 is the curve of the logistic equation. All curves have their points of inflexion at time¯ 0. D, 20 points along the 0±5 curve
that were used to generate the test dataset for that curve by adding random, lognormally-distributed errors. Note that ten of the 20 points are
below the point of inflexion and ten are above. Each set of ten points is regularly spaced along the time axis, as explained in the text. Rate

parameter used for upper half of each curve: – – 5±0; ±±±±±± 1±0; —— 0±5; —[— 0±1; – – – 0±01.

the parameters of fits of the new sigmoid equation, using
eqns (10) to (13).

Obser�ed dataset

Richards (1959) demonstrated his proposed growth
equation by applying it to observations of Pearl et al. (1934)
on the height growth of Cucumis melo seedlings at six
different temperatures. Here the Richards equation and the
new sigmoid equation are compared using the dataset
originally selected by Richards. Since these were means of
non-destructive measurements, fits were made to the
untransformed observations. Preliminary analysis indicated
that deviations from the curve fits did not increase with the
estimated values.

Cur�e-fitting

Symbolic computation software (Maple V Release 4;
Redfern, 1993) was used to evaluate the Richards equation
exactly from eqns (4) and (5) and to evaluate the new
sigmoid by solving eqn (10) for y numerically. The solution
to eqn (10) is bracketed by:

for c" 1±0
Kx

1cx
! y!

Kx

1x

for c! 1±0
Kx

1x
! y!min 0 Kx

1cx
,K1 (14)

where x¯ 2c−"ea(t−t
!
). An exact solution for y can be obtained

immediately for c¯ 1. A precise solution for y was then
obtained using a combination of a bisection method and a
Newton-Raphson method (Press et al., 1992). Numeric
integration might have been a faster alternative approach.
The least-squares best fits to each sequence of points for the
parameters of the two equations were found by a purpose-
built minimization programme using symbolic computation
software (Redfern, 1993). The algorithm was derived from
the Nelder and Mead downhill simplex method described in
Press et al. (1992). Statistical analysis of the results of curve-
fitting was carried out in Maple V Release 4 and on a
computer spreadsheet (Redfern, 1993; Microsoft2, 1996).
All curve fits were repeated at least once to achieve
confidence that a true best fit had been achieved by the least-
squares criterion.

RESULTS

Simulated dataset

After log-transformation, the average sum of squared
deviations of each sequence of 20 points from the original
curve that they were derived from was 0±1817. The average
sum of squared deviations for fits of the new sigmoid
equation to each of the eleven curves was less than this (Fig.
2A). The average sum of squared deviations for fits by the
new sigmoid equation was also lower than for the Richards
equation for every curve, although the difference was very
small when the rate parameter used to generate the upper
part of the curve was greater than or equal to 0±5 (Fig. 2A).
When the rate parameter of the upper part of the curve was
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F. 2. Results of fitting the Richards equation (D) and the new sigmoid equation (E) to sets of curves randomly generated from the 11 curves
partly illustrated in Fig. 1. Points are means of 100 estimates. Bars¯ s.d. A, Sum of squared deviations of fitted curves : the horizontal dashed
line indicates expected average deviation from the original curve used to generate each set. B, Estimated values of the upper asymptote : the
horizontal dashed line indicates original value of 100. C, Estimated time when size reaches half of its maximum value: the solid line indicates
original time for each curve. D, Estimated maximum rate of growth: the solid line indicates original maximum rate of growth of each curve.
Vertical axis is log-transformed. E, Estimated maximum RGR: the horizontal dashed line indicates the original value of 1±0 for every curve. Four
points have been omitted from the Richards equation’s estimates because they were either undefined or greater than 50. F, Estimated size at which

growth rate is maximum: the solid line indicates original size for each curve.

less than or equal to 0±2, the Richards equation consistently
fitted badly. The worst fits were when the rate parameter of
the upper part of the curve was 0±05.

This pattern was repeated for estimates of the various
characteristics of the curves (Fig. 2B–F). The estimates
from the new sigmoid equation always tended to be closer
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T 2. Sum of squared de�iations from fitted cur�es and estimates of characteristics of height growth by Cucumis melo
seedlings in darkness at six different temperatures (Pearl et al., 1934)

Treatment
Temp.

Sum of
squared

deviations

Time for
1}2

maximum
height (d)

Maximum
height
(mm)

Proportion of
maximum

height at point
of inflexion

Maximum
elongation

rate
(mm d−")

Maximum
RGR
(d−")

(°C) R New R New R New R New R New R New

37 3±95 8±06 4±60 4±60 157 157 0±398 0±391 36±2 37±1 3±93 1±54
35 17±2 26±5 4±22 4±22 196 197 0±377 0±372 48±2 49±5 14±2 1±82
30 106 139 4±98 4±99 249 249 0±368 0±373 54±9 56±3 X 1±63
25 38±6 51±5 5±27 5±27 226 227 0±383 0±374 50±6 52±1 7±52 1±64
20 15±7 14±7 8±93 8±93 178 179 0±455 0±447 32±9 33±3 1±10 0±93
15 1±52 0±89 25±3 25±3 74±1 73±9 0±551 0±563 7±5 7±4 0±29 0±32

N.S. N.S. N.S. * † ‡

Columns marked ‘R’ are values estimated using the Richards equation; columns marked ‘New’ are values estimated using the new sigmoid
equation. The symbol ‘X’ marks an undefined value of RGR. NS, No significant difference found between the two methods (P" 0±05) ; *, the
Richards equation estimates points of inflexion closer to 0±500 (P! 0±05, one-tailed t-test) ; †, elongation rates estimated by the new sigmoid
equation are higher (mean difference¯ 0±9 mm d−", P! 0±05, two-tailed t-test) ; ‡, variance of RGR among treatments from Richards equation
¯ 8±90; variance from new sigmoid equation¯ 0±33.

to the correct values than estimates from the Richards
equation. Nevertheless, although worse than the new
sigmoid equation, the Richards growth equation gave good
estimates for most of the characteristics of curves in which
the rate parameter used to generate the upper part of the
curve was greater than or equal to 0±5 (Fig. 2B–E). For the
other curves, the Richards equation made inaccurate but
possibly acceptable estimates of the maximum size, the time
at which size reached half its maximum (t

!
) and the

maximum growth rate (Fig. 2B–D). When the upper rate
parameter was in the range 0±02 to 0±2, the error in the
Richards equation’s average estimate of each characteristic
was often larger than the standard deviation among
estimates. In general the coefficients of variation of the sets
of estimates of each characteristic tended to be less than
10%, so the average error or bias was a substantial part of
the error in each estimate (Fig. 2B–F).

The Richards equation’s worst performance was in
estimating the maximum RGR (Fig. 2E). Its average
estimate was 1±3 (correct value 1±0) for the curve generated
with an upper rate parameter of 0±2. When the upper rate
parameter was reduced even further to 0±1, estimates of the
maximum RGR became almost random, varying between
1±5 and 383 (not included in Fig. 2E). For the remaining
curves, which were even more asymmetric, the maximum
RGRs were undefined. The new sigmoid estimated the
maximum RGRs of these curves less well than other
characteristics, although its estimates were mainly within
50% of the correct value for the most asymmetric curve and
better for the other curves.

Estimates of the size at the point of inflexion tended to be
closer to 50 than the true value (Fig. 2F). The Richards
equation always gave the estimates most distant from the
true value, so that its average estimates for the 11 curves
ranged only from 17±8 to 59±0, compared with the true
values that ranged from 0±5 to 90±0. The Richards equation
gave poor estimates of this characteristic for all curves
except those very close to a simple logistic, even though the
coefficient of variation of each set of estimates was usually
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F. 3. Height growth in the dark of seedlings of Cucumis melo at three
different temperatures : 30 °C (D), 20 °C (E) and 15 °C (^) (data from
Pearl et al., 1934). Curves were fitted using the Richards equation (solid
line) and the new sigmoid equation (dotted line). The curve fits are only

visibly different near the base of the 30 °C curve.

less than 5%. The estimates from the new sigmoid ranged
from 6±4 to 64±4.

Obser�ed dataset

The Richards equation fitted the height growth at the four
warmest temperatures more closely than the new sigmoid
equation, but both equations gave excellent fits and there
was no statistically significant evidence of a consistent
difference between methods in the sum of squared deviations
(Table 2, Fig. 3). The two equations estimated similar values
for most characteristics of the curves (Table 2). For the four
warmest temperatures, both equations estimated the height
when elongation rate was maximum to be close to 0±37-
times the maximum height. Nevertheless, there was evidence
that the Richards equation tended to estimate that the point
of inflexion was closer to half the maximum height than did
the new sigmoid (Table 2). This result was associated with
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a small difference in the estimated maximum elongation
rate. The largest difference between the two methods was in
the variance among temperature treatments of the maximum
RGR of seedling height (Table 2), and the Richards equation
did not estimate the maximum RGR at 30 °C.

DISCUSSION

The greater theoretical consistency and the more generic
nature of the new sigmoid model may in themselves be
sufficient reason for choosing to use it in preference to the
Richards equation for various simulations and curve-fitting
problems. However, since it is essentially an empirical
model, it was appropriate to test whether these theoretical
advantages would result in noticeable benefits in practice.
These tests also indicated the types of growth processes that
may be most appropriately represented by the Richards
equation or the new sigmoid equation.

Comparison of cur�e fits

The new sigmoid equation fitted all 11 sets of curves in the
simulated dataset successfully (Fig. 2). On average, for
every set, it found a curve that fitted each series of 20 points
more closely than the curve that originally generated them.
Given the wide range of forms of the original curves, this
demonstrated the versatility of the new equation (Fig. 1). Its
average estimates of maximum size and the time at which
size reached half its maximum were always within about
3% of the correct values (Fig. 2B and C). The coefficients
of variation of estimates were usually less than 10%. Its
average estimates of maximum growth rate were slightly
biased, but were always within 15% of the correct values
(Fig. 2D). Only its estimates of the size at the point of
inflexion were inaccurate, although closer than estimates
from the Richards equation (Fig. 2F).

The new sigmoid also made good estimates of the
maximum RGR for curves that were only slightly asym-
metric, or which had the point of inflexion above half the
maximum size (Fig. 2E). Even for curves with points of
inflexion at very small sizes, the estimates of maximum
RGR remained reasonably close to the correct values.
However, these encouraging results depended on the very
small error terms at small sizes, which resulted from errors
being proportional to size. Often such a relationship between
the magnitude of measurement errors and size will not be
maintained down to sizes as small as 0±1% of the upper
asymptote.

In contrast, the Richards growth equation gave con-
sistently worse fits to the simulated dataset and less accurate
estimates of the characteristics of the original curves (Fig.
2). It made especially inaccurate estimates of the charac-
teristics of curves with points of inflexion substantially
below half the maximum size. The estimates of maximum
RGR were particularly unreliable, except when the point of
inflexion was near or above half the asymptotic value.

Both equations made estimates of the size at the point of
inflexion that were heavily biased towards half the maximum
value of size, although this trend was weaker for the new
sigmoid than the Richards equation (Fig. 2F). This is a

problem that deserves attention, because the results of
curve-fitting are sometimes summarized using this parameter
(e.g. Verwijst and Vonfircks, 1994; Gaillard et al., 1997).
These results suggest that estimates of this parameter
derived by curve-fitting may be inaccurate and may
underestimate the degree of asymmetry. However, the
discontinuity of the second derivative of each hybrid curve
near the point of inflexion may have influenced these results.
Curve fits to the experimental observations also indicated
that the Richards equation tended to estimate that curves
were more symmetric than the new sigmoid equation did.

Both equations obtained excellent fits to the experimental
observations (Pearl et al., 1934). The Richards equation’s
failure to consistently estimate maximum RGR at high
temperatures can be justified by arguing that initial height
growth was probably not exponential at these temperatures.
In fact growth of these seedlings was close to what would be
predicted by the Gompertz equation, with the point of
inflexion close to 1}e (approx. 0±368) times the maximum
height. This explains the very low residual sums of squares
from the fits of the Richards equation, which includes the
Gompertz equation as a special case. On the other hand, the
new sigmoid’s consistent plausible estimates of maximum
RGR suggest that it can produce robust estimates of this
parameter, even when particular sequences of observations
appear to deviate from its assumption that growth tends
towards exponential at small sizes. Moreover, the new
sigmoid provided estimates of the size at the point of
inflexion at high temperatures that were very close to the
position expected for the Gompertz curve, so that careful
interpretation of its curve fits could have detected the close
match to the Gompertz curve.

The theoretical argument

The theoretical justification for both equations is strongest
when they are used to represent growth processes that are
expected to be exponential at small sizes or low densities.
Studies of such processes often treat the intrinsic rate of
increase (or RGR) of the initial exponential growth as a
characteristic of particular populations, conditions or
genotypes (e.g. Grime, Hodgson and Hunt, 1988; Thornley,
1995; Birch and Shaw, 1997). Indeed maximum RGR is
used in plant growth analysis to characterize seedling
growth, even though initial growth is only approximately
exponential (Grime et al., 1988; Poorter and Remkes, 1990).
In such cases, the suitability of a growth equation for
estimating maximum RGR is an important part of its
function. Therefore the numerical problems in estimating
parameters for the Richards equation also undermine its
theoretical justification.

The theoretical argument supports the new sigmoid
equation more consistently than the Richards equation. For
all values of the additional parameter, the new sigmoid
equation tends towards an exponential equation at small
sizes or low densities. All the curves it produces can
therefore be justified by the same theoretical argument. The
Richards equation can only be supported by the theoretical
argument when the parameter b" 0 [eqn (4)]. Since it is not
always obvious before curve-fitting whether or not b" 0,
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this undermines the theoretical justification for the Richards
equation generally as well as for b! 0.

Use of the Richards equation

The Richards equation is generally flawed by its in-
consistent properties. In part of its range it is exponential at
small sizes or low densities ; in the rest of the range it is not
exponential in any respect. This means that parameters of
different curves fitted using the Richards growth equation
are not necessarily equivalent. In particular, one parameter
equals the maximum intrinsic rate of increase (RGR) for
some curves, but not others. This inconsistency undermines
the comparability that is usually one of the main reasons
for performing curve-fitting. In a simulation, it could also
lead to unexpected behaviour that is difficult to interpret.
Furthermore, Ratkowsky (1983) concluded that curve-
fitting with the Richards equation was very likely to
generate biased parameter estimates.

On the other hand, the Pearl et al. (1934) dataset
illustrates the possibility that some phenomena may tend
towards exponential growth at small sizes in some
conditions, but have non-exponential growth at small sizes
in other conditions. This could be because different processes
limit growth in different conditions. When growth at small
sizes may be limited either by a process that can be described
by the Gompertz or monomolecular equations, or by a
competing process that resembles exponential growth, the
Richards equation may be very suitable.

Both the Richards equation and the new sigmoid equation
could include additional parameters allowing the lower
asymptote to have a non-zero value (e.g. Genstat 5
Committee, 1993; Sigmaplot2 4.0, 1997). This option was
ignored here, because a lower asymptote not equal to zero
would be inconsistent with the assumption that initial
growth was exponential. The error terms used in the
construction of the simulated dataset would also have been
difficult to justify if lower asymptotes had been allowed to
be non-zero. However, animal egg and birth masses, and,
less frequently, plant seed masses are often a significant
proportion of the organisms’ maximum masses. Note that
these initial masses and the dynamics of growth shortly after
hatching, birth, or germination may substantially undermine
assumptions that initial growth is close to exponential.
Since the Richards equation does not necessarily represent
exponential growth at small sizes, it may be more suitable
than the new sigmoid equation when a non-zero lower
asymptote is expected.

Use of the new sigmoid equation

Apart from not having a simple analytic integrated form
of the equation available, the new sigmoid equation seems
to have many advantages. Although many sigmoid
equations have been described in the past (e.g. Zeide, 1993),
this one is unique because it is the first that combines
exponential growth at small sizes with the potential to have
its point of inflexion at any point. It can produce a complete

range of sigmoid curves with both upper and lower
asymptotes. The parameters generated by fitting curves to
different sequences of observations can be directly compared
and can be related to biologically meaningful characteristics
of growth processes. In addition to applications in curve-
fitting, it is also a useful basis for a simple, flexible and
generic model of growth for inclusion in simulations of
processes such as the vegetation dynamics of grazed plant
communities (Birch, 1995; Birch, Werkman and Partridge,
1997).

In this paper, the two sigmoids were compared using
good datasets that included points near both lower and
upper asymptotes, as well as points close to the point of
inflexion. Actual observations may often be less complete.
In such cases, it will often be difficult to obtain separate
estimates of all the parameters in these sigmoid equations.
More constrained models must be used for fitting, such as
logistic or linear models. For example, if observations of the
increase in mass y are only available for small masses, the
maximum RGR a can be estimated by estimating the slope
of a regression of ln(y) against time. The parameters in fits
of the new sigmoid equation were highly consistent with the
parameters in the logistic equations used to generate the
simulated dataset. This suggests that parameters for
simulations using the new sigmoid equation can be obtained
from multiple sources, when information is only available as
small fragments. The direct relationships between para-
meters of the new sigmoid equation and measurable
characteristics of biological growth suggest that the para-
meters can also be estimated by various methods apart from
curve-fitting.

Despite its attractive properties, this growth equation has
rarely been used. The differential form of the equation [eqn
(11)] is so simple that similar equations have occasionally
been included in models (e.g. Aerts and van der Peijl, 1993).
However, the value of this equation as a generic tool for
empirical analysis and simulation has not previously been
recognized. Hopefully this paper will encourage others to
take advantage of this simple and powerful tool for the
analysis and simulation of biological phenomena.
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APPENDIX

Algebraic definition of the 11 cur�es used to generate the
simulated dataset

All curves were constructed by joining pairs of logistic
growth curves. A generic equation for a logistic growth
curve is :

y¯
K®k

1e−a(t−t
!
)

k (A 1)

where k is the lower asymptote, K is the upper asymptote,
a is a parameter of the initial acceleration of growth,
equalling the maximum RGR when k¯ 0, and t

!
is the time

at which y¯ (Kk)}2. This curve has no maxima or
minima at finite times. It has a single point of inflexion at t
¯ t

!
.

(1) The curves used to generate the simulated dataset
included four curves with the maximum rate of growth at
size & 50.

y¯
100(2z®1)

z(1e−t)
t% 0 (A 2)

3
dy

dt
¯

100(2z®1) e−t

z(1e−t)#
t% 0 (A 3)

y¯
100(2z®1)

2z®1e−zt

t& 0 (A 4)

3
dy

dt
¯

100(2z®1) ze−zt

(2z®1e−zt)#
t& 0 (A 5)

where z¯ 1±0, 1±5, 2±0 and 5±0 in each of the four curves.

(2) They also included seven curves with the maximum rate
of growth at size ! 50.

y¯
100z

z(2®z) e−t

t% 0 (A 6)

3
dy

dt
¯

100z(2®z) e−t

(z(2®z) e−t)#
t% 0 (A 7)

y¯
100(2®z)

1e−zt

®100(1®z) t& 0 (A 8)

3
dy

dt
¯

100z(2®z) e−zt

(1e−zt)#
t& 0 (A 9)

where z¯ 0±01, 0±02, 0±05, 0±1, 0±2, 0±5, 0±75 in each of the
seven curves.
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Substituting t¯ large negative number in eqns (A 2) and
(A 6) demonstrates that both sets of hybrid curves have
lower asymptotes at y¯ 0. Substituting t¯ large positive
number in eqns (A 4) and (A 8) demonstrates that both sets
have upper asymptotes at y¯ 100.

Substituting t¯ 0 in eqns (A 2) and (A 4) demonstrates
that the upper and lower parts of the first set of hybrid
curves meet at :

t¯ 0, y¯
50(2z®1)

z

Substituting t¯ 0 in eqns (A 3) and (A 5) demonstrates that
the slopes of the upper and lower parts of the curves match
at this point, with:

dy

dt
¯

25(2z®1)

z

Comparison with eqn (A 1) shows that the point of inflexion
of eqn (A 2) is at t¯ 0, and of eqn (A 4) at t% 0, so the
maximum slope of the hybrid curve is where the two logistic
curves join.

Similarly, substituting t¯ 0 in eqns (A 6) and (A 8)
demonstrates that the upper and lower parts of the second
set of hybrid curves meet at :

t¯ 0, y¯ 50z

Substituting t¯ 0 in eqns (A 7) and (A 9) demonstrates that
the slopes of the upper and lower parts of the curves match
at this point, with:

dy

dt
¯ 25z(2®z)

Comparison with eqn (A 1) shows that the point of inflexion
of eqn (A 6) is at t" 0, and of eqn (A 8) at t¯ 0, so the
maximum slope of the hybrid curve is where the two logistic
curves join.

Thus these equations define hybrid curves that satisfy the
following conditions: (1) they consist of two parts which
join at t¯ 0; (2) they are continuous at t¯ 0; (3) they have
continuous slopes at t¯ 0; (4) their maximum slopes are at
t¯ 0; (5) their lower asymptotes are at y¯ 0; (6) their
upper asymptotes are at y¯ 100.
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